Discrete Fourier Analysis, Cubature, and Interpolation on a Hexagon and a Triangle
نویسندگان
چکیده
Several problems of trigonometric approximation on a hexagon and a triangle are studied using the discrete Fourier transform and orthogonal polynomials of two variables. A discrete Fourier analysis on the regular hexagon is developed in detail, from which the analysis on the triangle is deduced. The results include cubature formulas and interpolation on these domains. In particular, a trigonometric Lagrange interpolation on a triangle is shown to satisfy an explicit compact formula, which is equivalent to the polynomial interpolation on a planer region bounded by Steiner’s hypocycloid. The Lebesgue constant of the interpolation is shown to be in the order of (logn)2. Furthermore, a Gauss cubature is established on the hypocycloid.
منابع مشابه
DISCRETE FOURIER ANALYSIS ON FUNDAMENTAL DOMAIN OF Ad LATTICE AND ON SIMPLEX IN d-VARIABLES
A discrete Fourier analysis on the fundamental domain Ωd of the d-dimensional lattice of type Ad is studied, where Ω2 is the regular hexagon and Ω3 is the rhombic dodecahedron, and analogous results on d-dimensional simplex are derived by considering invariant and anti-invariant elements. Our main results include Fourier analysis in trigonometric functions, interpolation and cubature formulas o...
متن کاملDiscrete Fourier Analysis and Chebyshev Polynomials with G2 Group
Abstract. The discrete Fourier analysis on the 300–600–900 triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm–Liouville eigenvalue problem that contains two parameters, whose solutions are ...
متن کاملar X iv : 0 80 8 . 01 80 v 1 [ m at h . N A ] 1 A ug 2 00 8 CUBATURE FORMULA AND INTERPOLATION ON THE CUBIC DOMAIN
Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on [−1, 1], as well as new results on [−1, 1]. In particular, compact formulas for the fu...
متن کاملCubature formulas and discrete fourier transform on compact manifolds
Analysis on two dimensional surfaces and in particular on the sphere S found many applications in computerized tomography, statistics, signal analysis, seismology, weather prediction, and computer vision. During last years many problems of classical harmonic analysis were developed for functions on manifolds and especially for functions on spheres: splines, interpolation, approximation, differe...
متن کاملar X iv : 0 80 8 . 01 80 v 2 [ m at h . N A ] 1 5 A ug 2 00 8 CUBATURE FORMULA AND INTERPOLATION ON THE CUBIC DOMAIN
Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on [−1, 1], as well as new results on [−1, 1]. In particular, compact formulas for the fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2008